PEDIATRIC RADIOLOGY

Enrico B. Arkink 5th year - 28.09.2022-30.09.2022

Schedule

- Wednesday 28.09.2022
 - 13.00-13.45: Introduction and MSK
 - 14.00-14:45: Thorax
- Friday 30.09.2022
 - 13.00-13.45: Abdomen
 - 14.00-14.45: Neuro and ENT

PEDIATRIC RADIOLOGY

Abdomen GI tract

Modalities in pediatric abdominal imaging

- Abdominal ultrasound +/- Doppler
- Abdominal X-ray
- Fluoroscopy
- Nuclear medicine (isotope scanning, FDG-PET)
- Magnetic resonance imaging
- Computed tomography

Conventional abdominal radiography

- Indications neonates:
 - Nectrozing enterocolitis (NEC)
 - AP & lateral supine
 - Anal atresia
 - PA in prone position
 - Acute abdomen (free air)
 - AP and lateral supine with horizontal beam
 - Or on left side when >10 yoa

- Other possible indications (older children):
 - Swallowed foreign body
 - Bowel perforation
 - Pneumoperitoneum
 - Hematuria
 - Constipation(?) \rightarrow ultrasound

Conventional abdominal radiography

- To be assessed:
 - Diaphragms \rightarrow basal pneumonia
 - − Abdominal wall \rightarrow edema
 - Skeletal structures
 - Liver and spleen shadow
 - Retroperitoneum \rightarrow psoas muscles
 - Calcifications
 - Bowel structures → air, position stomach, jejunum, ileum, colon

Conventional abdominal radiography

- To be assessed:
 - Duodenum \rightarrow limited air
 - Jejunum \rightarrow wall thickening, width, air-fluid levels
 - Ileum \rightarrow similar as jejunum, especially in RLQ
 - Coecum \rightarrow localization (invagination)
 - − Colon \rightarrow wall thickening, loss of haustration
 - Space-occupying lesions → round, oval shadows shifting bowel structures

Neonatal abdominal X-ray

- Air in bowel structures after birth in neonates
 - Stomach \rightarrow 0-15 minutes
 - − Duodenum \rightarrow <1 hour
 - Proximal small bowel → <3 hours
 - − Distal small bowel \rightarrow 12 hours

 $- \operatorname{Colon/rectum} \rightarrow 24 \text{ hours}$

Acute Abdomen in the Neonate

High obstruction

esophageal atresia duodenal atresia duodenal web annular pancreas malrotation jejunal atresia

Low obstruction

ileal atresia meconium ileus meconium plug Hirschsprung disease anal atresia

Acquired diseases

Necrotizing enterocolitis (NEC)

Hypertrophic pyloric stenosis

Incarcerated inguinal hernia

Gastro-enteritis

Sepsis

Perforated stress ulcus

Ovarian torsion

Bowelgas pattern on the radiograph

- 1. Dilatation
- 2. Number of dilated bowel loops
- 3. Small bowel or colon
- 4. Airfilled rectum
- 5. Pneumatosis intestinalis
- 6. Free air and ascites

C) LANDSPÍTALI HÁSKOLASJÚKRAHÚS

- Dilatations
- More than interpedicular width L2
- Unchanging bowel gas pattern → abscence of bowel movement

- Number of dilated loops
 - Double bubble sign
 - Triple bubble sign
- More than three dilated loops → distal obstruction

- Small bowel or colon?
 - Difference difficult since no haustrations in colon yet
 - Position (colon more dorsally located)
 - Colon enema study is sometimes necessary to discriminate between them with certainty
- Airfilled rectum?
 - No → obstruction

Radiology Assistant

- Pneumatosis intestinalis
 → air in the wall
- Free air and ascites

Neonatal abd. X-ray: duodenal atresia

- Congenital malformation in the duodenum
- Presenting with abdominal distension, vomiting (often bilous, because atretic segment distally to ampulla Vateri), absent bowel movements
- 1:5000/10.000, M=F
- "Double bubble sign"
- No air distally to area of atresia in duodenum

Neonatal abd. X-ray: jejunal atresia

- Congenital malformation in the jejunum
- Presenting with abdominal distension and bilous vomiting < 24 hours after birth
- 1:1000
- "Tripple bubble sign"
- No air distally to area of atresia in jejunum

Neonatal abdominal X-ray: NEC

- Necrotizing enterocolitis:
 - Premature infants; risk when <1000 grams; in first 3 weeks of life
 - Areas affected: distal ileum and (right-sided) colon
 - Etiology: combination of ischemia & sepsis/infection
 - Symptoms: feeding intolerance, abdominal distention, sepsis, bloody stool
 - Complications:
 - Gangrene & perforation
 - After therapy: stenoses/strictures → colon at the level of the splenic flexure

Neonatal abdominal X-ray: NEC

- Abdominal X-ray in NEC:
 - Dilatation of bowel structures (RLQ, ileus)
 - Bowel wall thickening
 - Pneumatosis intestinalis
 - Portal venous gas

Neonatal abdominal X-ray: NEC

- Abdominal X-ray in NEC:
 - Dilatation of bowel structures (RLQ, ileus)
 - Bowel wall thickening
 - Pneumatosis intestinalis
 - Portal venous gas

Neonatal abd. X-ray: meconium ileus

- Accumulation of meconium in distal ileum and caecum
- Microcolon
- Often first manifestation of cystic fibrosis
 - Dilated, air-filled <u>small bowel</u> loops
 - No air-fluid levels
 - Soap bubble sign (air between meconium pellets)

Neonatal abd. X-ray: meconium plug sx

- Obstructing meconium plug in left colon ("small left colon syndrome")
- Dilation of colonic loops, f.i. splenic flexure
- Association with maternal DM, Hirschsprung; less with CF

Neonatal abd. X-ray: Hirschsprung

- Most common cause of neonatal colonic obstruction (15-20%)
- Aganglionosis in distal colon and rectum → abscence of ganglion cells → spasm in denervated colon
- 1:5000/8000 births, more boys
- If X-ray is abnormal and suggestive of distal bowel obstruction, watersoluble contrast enema fluoroscopy the next step for evaluation of the

colon

Neonatal abd. US: pyloric stenosis

- Hypertrophic pyloris stenosis (HPS)
- Idiopathic thickening of gastric pyloric musculature; progressive gastric outlet obstruction
- 2,5/1000, M>F 4:1, Caucasians
- Risks: being firstborn, mother with HPS
- Non-bilous, projectile vomiting; weight loss, dehydration
- Seldom <3 weeks of age, normally 6-12 weeks of age

Neonatal abd. US: intussusception

- Ileocolic or ileoileal; due to peristalsis
- 3-24 months, peak 6-9 months
- Idiopathic, possibly increase lymph nodes after viral infection
- Other lead points: duplication cyst, Meckel's diverticulum, lymphoma
- US:
 - Targetlike mass with bowel-withinbowel → doughnut sign
 - Pseudokidney sign

Neonatal abdomen: intussusception

- Contrast enema fluoroscopy is golden standard
- Intussusception occluding mass prolapsing into the lumen
- Contrast enema fluoroscopy may also be the treatment in a lot of cases (preferred over surgery)

Pediatric abd. US: appendicitis

- Typically children and young adults
- Periumbilical pain \rightarrow RLQ
- On US: aperistaltic, concentrically layered, non-compressible, blinding, sausage like structure; fecolith in 35%

Test	29-08-2007 21:32	30-08-2007 09:10		
WBC	15.7 H	9.1		
▲CHEMIE				
CRP	3	84 H		

Pediatric abd. CT: appendicitis

Pediatric abd. X-ray: foreign bodies

PEDIATRIC RADIOLOGY

Abdomen Urinary tract

Pediatric renal US: normal anatomy

- Immature neonatal cortex: echogenic
- Hyperechoic relative to the liver
- Excellent corticomedullary differentiation
- Postnatally echogenicity of the cortex gradually decreases – hypoechoic relative to the liver by 4 months (6)
- Hypoechoic pyramids
- After 1 year → hypoechoic cortex, renal sinus → central echogenic area

Pediatric renal US: normal anatomy

- Adrenal gland may be seen in neonatal infants!
- Normally not seen in older children and adults

Radiology Assistant, courtesy S. Robben, R. van Rijn, R. Smithuis

Pediatric renal US: normal anatomy

Kidney length neonates in cm			Kidney length in cm						
Gestational age	Length (1sd)	Min-max	No	Age	Length (sd)	No	Age	Length (sd)	No
24-31 wk	3.3 (0.4)	2.5 - 4.0	29	0 – 1 wk	4.5 (0.3)	10	8 – 9 y	8.9 (0.9)	18
32-35 wk	3.6 (0.4)	2.5 - 4.6	33	1 wk - 4 mo	5.3 (0.7)	54	9 – 10 y	9.2 (0.9)	14
36-37 wk	4.1 (0.4)	3.0 - 4.9	35	4 – 8 mo	6.2 (0.7)	20	10 - 11 y	9.2 (0.8)	28
38-41 wk	4.1 (0.4)	2.6 - 5.2	153	8 – 12 mo	6.2 (0.6)	8	11 – 12 y	9.6 (0.6)	22
Radiology Assistant, courtesy S. Robben, R. van Rijn, R. Smithuis			1 – 2 y	6.6 (0.5)	28	12 - 13 y	10.4 (0.9)	18	
			2 - 3 y	7.4 (0.5)	12	13 - 14 y	9.8 (0.8)	14	
			3 – 4 y	7.4 (0.6)	30	14 – 15 y	10.0 (0.6)	14	

4 - 5 y

5 - 6 y

6 - 7 y

7 - 8y

7.9 (0.5)

8.1 (0.5)

7.8 (0.7)

8.3 (0.5)

26

30

14

18

15 - 16 y

16 - 17 y

17 - 18 y

18 - 19 y

11.0 (0.8)

10.0 (0.9)

10.5 (0.3)

10.8 (1.1)

6

10

4

Pediatric renal US: normal variants

- Dromedary hump
- Focal bulge in the lateral margin of the midpole of the <u>left</u> kidney
- Caused by splenic impression onto the superolateral border of the left kidney
- Echogenicity as (other) normal tissue
- May mimick mass

Pediatric renal US: normal variants

- (Prominent, hypertrophied) <u>column of</u> <u>Bertin</u>
- Column of Bertin in 50% of the population, 20% bilateral, hypertrophied columns less common
- Extension of renal cortical tissue separating pyramids; normal tissue
- May mimick renal mass (renal pseudotumour)

Pediatric renal imaging: variants

- <u>Renal agenesis</u>
- Congenital absence of one kidney (if two kidneys → Potter sx → fatal)
- 1/500 live births
- Possibly slight male predilection
- If compensatory hypertrophy other kidney, no treatment needed

ΤΑΙΙ

Pediatric renal US: normal variants

- Horseshoe kidney
- 1/400-500: M:F=2:1
- Most common renal fusion anomaly
- Susceptible to trauma
- Higher risk of kidney stone
- Higher risk of transitional cell carcinoma (later age)
- Higher risk of Wilms' tumor

Wilms' tumor

- Nephroblastoma → malignant pediatric renal tumor
- 85% of pediatric renal mass
- 7% of pediatric cancer
- 1-11 years of age, peak 3-4 years (80% before 5 years)
- Painless upper quadrant abdominal mass; hematuria (20%)
- Surgery and chemotherapy curative in app. 90%

Neuroblastoma

- Tumors of neuroblastic origin
- Along sympathetic chain, vast majority from adrenal gland
- Most common extracranial solid childhood malignancy
- 3rd commonest pediatric cancer after brain tumours and leukemia
- Accounting for 15% of childhood cancer deaths

Pediatric renal US: VUR

- Vesicoureteric reflux
- Abnormal flow of urine from bladder into upper urinary tract, young children
- 8% of females, 2% of males
- Among children with urinary tract infections → 25-40%
- Reflux predisposes for pyelonephritis → scarring

Pediatric voiding cystourethrogram

Renogram, kidney scintigraphy

- Test renal function
- Compare left/right
- Detect defects in functional parenchyma
- DDx for defects: scar, cyst, tumor, infarct, hematoma, infection

Ureteropelvic duplication

- Supernumerary collecting systems
- Duplex kidney: single renal mass with > 1 collecting system
- Fused kidney: fusion of 2 renal parenchymal masses.
- Some duplication anomalies have ureteral ectopy with or without ureterocele
- Surgery may be needed to correct obstruction or VUR.

Radiopaedia, courtesy Vivek Pai

Questions?

Acknowledgements

Boris Brkljačić

